"/>

中文字幕网伦射乱中文-超清中文乱码字幕在线观看-亚洲v国产v欧美v久久久久久-久久性网-手机在线成人av-成人六区-国产人与zoxxxx另类一一-青青草国产久久精品-蜜桃av久久久一区二区三区麻豆-成人av一区二区免费播放-在线视频麻豆-www爱爱-成人免费看片视频-性欧美老肥妇喷水-五月99久久婷婷国产综合亚洲-亚洲最色-各种含道具高h调教1v1男男-91丨porny丨国产-国产精品无码专区在线观看不卡-大香伊人

Waste-free, recyclable polymer potentially substitute for plastics: study

Source: Xinhua    2018-04-27 02:33:54

WASHINGTON, April 26 (Xinhua) -- Chemists with Colorado State University reported on Thursday in the journal Science a step toward waste-free, sustainable materials that may one day compete with conventional plastics.

Eugene Chen, a professor at the university's Department of Chemistry, and his colleague have discovered a polymer with many of the same characteristics in plastics, including light weight, heat resistance, strength and durability.

Also, the new polymer, unlike typical petroleum plastics, can be converted back to its original small-molecule state for complete chemical recyclability, and this can be accomplished without the use of toxic chemicals or intensive lab procedures.

Synthetic polymers include plastics, fibers, ceramics, rubbers, coatings, and many other commercial products. Polymers are a broad class of materials characterized by long chains of chemically bonded, repeating molecular units called monomers.

Chen's lab demonstrated a chemically recyclable polymer in 2015. But it cannot be made without cold conditions, thus limiting its industrial potential. The previous polymer also had low heat resistance and low molecular weight, and was relatively soft.

Chen said, the monomer of new polymer structure can be conveniently polymerized under environmentally friendly, industrially realistic conditions which are solvent-free, at room temperature, with just a few minutes of reaction time and only a trace amount of catalyst.

The resulting material owns a high molecular weight, thermal stability and crystallinity, and mechanical properties that perform very much like a plastic.

Most importantly, according to researchers, the polymer can be recycled back to its original, monomeric state under mild lab conditions, using a catalyst.

Without need for further purification, the monomer can be re-polymerized, thus establishing what a circular materials life cycle, Chen said.

"The polymers can be chemically recycled and reused, in principle, infinitely," Chen added.

However, there is still much work to be done to perfect the patent-pending monomer and polymer production processes, according to Chen.

"It would be our dream to see this chemically recyclable polymer technology materialize in the marketplace," Chen said.

Editor: yan
Related News
Xinhuanet

Waste-free, recyclable polymer potentially substitute for plastics: study

Source: Xinhua 2018-04-27 02:33:54

WASHINGTON, April 26 (Xinhua) -- Chemists with Colorado State University reported on Thursday in the journal Science a step toward waste-free, sustainable materials that may one day compete with conventional plastics.

Eugene Chen, a professor at the university's Department of Chemistry, and his colleague have discovered a polymer with many of the same characteristics in plastics, including light weight, heat resistance, strength and durability.

Also, the new polymer, unlike typical petroleum plastics, can be converted back to its original small-molecule state for complete chemical recyclability, and this can be accomplished without the use of toxic chemicals or intensive lab procedures.

Synthetic polymers include plastics, fibers, ceramics, rubbers, coatings, and many other commercial products. Polymers are a broad class of materials characterized by long chains of chemically bonded, repeating molecular units called monomers.

Chen's lab demonstrated a chemically recyclable polymer in 2015. But it cannot be made without cold conditions, thus limiting its industrial potential. The previous polymer also had low heat resistance and low molecular weight, and was relatively soft.

Chen said, the monomer of new polymer structure can be conveniently polymerized under environmentally friendly, industrially realistic conditions which are solvent-free, at room temperature, with just a few minutes of reaction time and only a trace amount of catalyst.

The resulting material owns a high molecular weight, thermal stability and crystallinity, and mechanical properties that perform very much like a plastic.

Most importantly, according to researchers, the polymer can be recycled back to its original, monomeric state under mild lab conditions, using a catalyst.

Without need for further purification, the monomer can be re-polymerized, thus establishing what a circular materials life cycle, Chen said.

"The polymers can be chemically recycled and reused, in principle, infinitely," Chen added.

However, there is still much work to be done to perfect the patent-pending monomer and polymer production processes, according to Chen.

"It would be our dream to see this chemically recyclable polymer technology materialize in the marketplace," Chen said.

[Editor: huaxia]
010020070750000000000000011105521371396891