中文字幕网伦射乱中文-超清中文乱码字幕在线观看-亚洲v国产v欧美v久久久久久-久久性网-手机在线成人av-成人六区-国产人与zoxxxx另类一一-青青草国产久久精品-蜜桃av久久久一区二区三区麻豆-成人av一区二区免费播放-在线视频麻豆-www爱爱-成人免费看片视频-性欧美老肥妇喷水-五月99久久婷婷国产综合亚洲-亚洲最色-各种含道具高h调教1v1男男-91丨porny丨国产-国产精品无码专区在线观看不卡-大香伊人

Study shows how friction leads to static electricity

Source: Xinhua| 2019-09-12 01:31:24|Editor: yan
Video PlayerClose

CHICAGO, Sept. 11 (Xinhua) -- Researchers at Northwestern University (NU) have developed a new model showing that rubbing two objects together produces static electricity, or triboelectricity, by bending the tiny protrusions on the surface of materials.

At the nanoscale, all materials have rough surfaces with countless tiny protrusions. When two materials come into contact and rub against one another, these protrusions bend and deform.

Using a simple model, the researchers found that these deformations give rise to voltages that ultimately cause static charging. Voltages arising from the bending protrusions during rubbing are large enough to cause static electricity.

This phenomenon is called the "flexoelectric effect," which occurs when the separation of charge in an insulator arises from deformations such as bending.

"Our finding suggests that triboelectricity, flexoelectricity and friction are inextricably linked," said Laurence Marks, professor of materials science and engineering in NU's McCormick School of Engineering. "This provides much insight into tailoring triboelectric performance for current applications and expanding functionality to new technologies."

The research could have important implications for existing electrostatic applications, such as energy harvesting and printing, as well as for avoiding potential dangers, such as fires started by sparks from static electricity.

Greek philosopher Thales of Miletus first reported friction-induced static electricity in 600 B.C. "Since then, it has become clear that rubbing induces static charging in all insulators - not just fur," Marks said. "However, this is more or less where the scientific consensus ended."

The research will be published on Thursday in the journal Physical Review Letters.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011105521383848761