中文字幕网伦射乱中文-超清中文乱码字幕在线观看-亚洲v国产v欧美v久久久久久-久久性网-手机在线成人av-成人六区-国产人与zoxxxx另类一一-青青草国产久久精品-蜜桃av久久久一区二区三区麻豆-成人av一区二区免费播放-在线视频麻豆-www爱爱-成人免费看片视频-性欧美老肥妇喷水-五月99久久婷婷国产综合亚洲-亚洲最色-各种含道具高h调教1v1男男-91丨porny丨国产-国产精品无码专区在线观看不卡-大香伊人

Scientists develop "cocktail therapy" for plant disease

Source: Xinhua| 2019-12-08 16:36:43|Editor: ZX
Video PlayerClose

NANJING, Dec. 8 (Xinhua) -- Researchers have developed a "cocktail therapy" to control bacterial wilt disease by blending viruses together to selectively destroy the pathogen.

Bacterial wilt disease is mainly caused by Ralstonia solanacearum, a bacterium that is common in soil. More than 400 plants, such as tomatoes and peanuts, can be infected with the disease, causing economic loss.

Chemicals and fumigation are often used to control plant diseases, but only provide temporary relief from the disease. The pathogen can develop resistance to the chemicals and healthy soil microbes can be disrupted. The following outbreaks may become worse.

Researchers from China's Nanjing Agricultural University, Utrecht University in the Netherlands and the University of York in Britain developed a new approach to control the plant disease with bacteriophages.

A bacteriophage is a virus that infects bacteria and has been proposed as an alternative to pesticides to kill bacterial pathogens of crops.

They selected four bacteriophages that can infect Ralstonia solanacearum and isolated more than 1,000 strains of Ralstonia solanacearum in four Chinese provincial regions. They then tested different combinations of bacteriophages against the bacteria.

According to the research published in the journal Nature Biotechnology, increasing the number of bacteriophages in combinations decreased the incidence of bacterial wilt disease in greenhouse and field experiments, and the remaining bacteria grew much slower.

The researchers explained that bacteriophages of Ralstonia solanacearum had no effects on the other 400 strains of bacteria in the soil. By precisely killing pathogens, bacteriophages allowed healthy soil microbes to recover, enhancing soil's immunity to pathogens.

They said the study provided proof that specific bacteriophage combinations have potential as precision tools to control plant pathogenic bacteria.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001386152071